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Abstract. Using variational and numerical solutions we show that stationary negative-energy localized
(normalizable) bound states can appear in the three-dimensional nonlinear Schrödinger equation with a
finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity,
the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system
becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite
norm at positive energies in the continuum. The normalizable negative-energy bound states could be
created in BECs and studied in the laboratory with present knowhow.

PACS. 45.05.+x General theory of classical mechanics of discrete systems – 05.45.-a Nonlinear dynamics
and chaos – 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural prop-
erties

1 Introduction

The nonlinear Schrödinger (NLS) equation with cubic
or Kerr nonlinearity appears in many areas of physics
and mathematics [1]. Of these, two areas have drawn
much attention in recent time. They are pulse propagation
in nonlinear medium [2–4] and Bose-Einstein condensa-
tion (BEC) in confining traps [5]. A quantum-mechanical
mean-field description of BEC is done using the nonlinear
Gross-Pitaevskii (GP) equation which is essentially the
NLS equation with cubic nonlinearity. Though the NLS
equation in these two areas have similar mathematical
structure, the interpretation of the different terms in it is
quite distinct. In BEC it is an extension of the Schrödinger
equation to include a nonlinear interaction among bosons.
In optics it describes electromagnetic pulse propagation in
a nonlinear medium. Also, usually there is no external po-
tential in the NLS equation in optics [1], whereas in BEC a
trapping potential is to be included in it [5]. In most stud-
ies in BEC an infinite parabolic harmonic potential has
been included in the NLS equation which simulates the
infinite or nearly infinite experimental parabolic magnetic
trap.

In this paper we consider a finite square-well trapping
potential in the NLS equation with cubic nonlinearity. Al-
though, we consider a square-well potential for obvious
analytical knowledge about this potential, most of our re-
sults should be valid for any finite potential and the ex-
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periments are really carried out on finite traps. This po-
tential is piecewise constant and leads to analytic solution
in many one-dimensional (1D) problems, and serves as a
model for a trap of finite depth and can be realized in the
laboratory. Because of these features, there have been sev-
eral studies of the 1D NLS equation with a finite square-
well and other simple potentials. Zakharov and Shabat [3]
found the solutions to the NLS equation with a constant
potential on the infinite line. Carr et al. solved the NLS
equation under periodic and box boundary conditions [6]
as well as with the 1D square-well potential [7]. There have
been studies of the step function [8,9], point-like impurity
potential [10] and the parabolic potential [11] in the NLS
equation, as well as transmission of matter wave across
various potentials [12].

We extend the above 1D investigations to the
spherically-symmetric three-dimensional (3D) square-well
interaction. This is possibly the most-studied problem in
linear quantum mechanics and allows analytic or quasi-
analytic treatment in many cases. Also, it models an ex-
perimental situation which can be realized with present-
day BEC technology with the use of a detuned laser beam
of finite intensity [7,9]. Such an optical device could gener-
ate a square-well potential in one direction [7]. Three such
potentials in orthogonal directions could make an excel-
lent model for a finite 3D square-well potential. In BEC
three standing-wave orthogonal laser beams have already
been used to make a 3D periodic optical-lattice poten-
tial [13]. In view of this, the creation of a 3D square-well



280 The European Physical Journal D

potential seems possible. Once a BEC is materialized in a
square-well potential, it could be studied in the laboratory
and the results compared with the prediction of the theo-
retical models based on the GP equation, thus providing
stringent tests for these models.

We show that it is possible to have normalizable sta-
tionary BEC bound states in localized finite 3D square-
well potentials for a range of nonlinearity parameters. A
too strongly attractive nonlinearity parameter is found to
lead to collapse, whereas a very strong nonlinear repulsion
does not bind the system. In addition to the normalizable
stationary bound states, the repulsive NLS equation with
square-well interaction is also found to yield nonnormal-
izable states where the probability density has a central
peaking on a constant background extending to infinity.
Obviously, these nonnormalizable states do not satisfy the
boundary condition that the wave function ψ(r) at a ra-
dial distance r should tend to 0 as r → ∞. The forma-
tion and the study of the normalizable states could be of
utmost interest in several areas, e.g., optics [1], nonlin-
ear physics [1] and BEC [5], whereas the nonnormalizable
states will draw the attention of researchers in mathemat-
ical and nonlinear physics. We use both variational as well
as numerical solutions of the NLS equation in our study.

In this connection we mention that in an exponentially
decaying finite potential well one could have the interest-
ing possibility of quantum tunneling and the appearance
of quasi-bound states, which has been studied in detail in
reference [14]. In the present study with square-well po-
tential this possibility is not of concern.

In Section 2 we present the theoretical model which
we use in our investigation. In Section 3 we explain how
to obtain numerically the usual normalizable solutions of
the NLS equation with the finite and infinite square-well
potentials. We also explain the origin of the nonnormaliz-
able solutions and how to obtain them numerically. Then
we develop a time-dependent variational method for the
study of this problem. The nonlinear problem is reduced
to an effective potential well. The possibility of the ap-
pearance of stable bound states in this effective potential
for a wide range of the parameters is discussed. In Sec-
tion 4 we consider the complete numerical solution of the
NLS equation for a finite and infinite square-well poten-
tials. We obtain the condition of stability of these bound
states numerically and find their wave functions. We also
obtain the nonnormalizable solutions of the NLS equation
numerically. Finally, in Section 5 a brief summary is given.

2 The nonlinear Schrödinger equation

We begin with the radially-symmetric time-dependent
quantum-mechanical GP equation used to describe a BEC
at 0 K [5]. As we shall not be concerned with a particular
experimental system, we write the GP equation in dimen-
sionless variables. The radial part of the 3D spherically-
symmetric GP equation for the Bose-Einstein condensate
wave function Φ(R; τ) at position R and time τ can be

written as [15]
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where G = 4π�
2aN/m is the nonlinearity, and v(R) is the

square-well potential. Here m is the mass of each atom,
N the number of atoms and a is the atomic scattering
length. We introduce convenient dimensionless variables
by r = R/l, t = τω/2, Ψ = Φl3/2, V (r) = 2v(R)/(�ω),
where l =
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angular frequency. In terms of these new variables the GP
equation becomes[
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Ψ(r; t) = 0, (2)

where g = 8πaN/l. The square well potential is taken as

V (r) = −γ2, r ≤ Λ; = 0, r > Λ, (3)

with γ2 the depth and Λ the range. Equation (2) with
cubic nonlinearity is the usual NLS equation often used
in problems of optics and nonlinear physics and will be
referred to as the NLS equation in the following. If we set
g = 0 in equation (2), this equation becomes the usual lin-
ear Schrödinger equation. In BEC t denotes time and r the
space variable. In nonlinear optics, t denotes the direction
of propagation of pulse, r denotes the transverse direc-
tions, and Ψ refers to components of electromagnetic field.
In nonlinear optics the 3D NLS equation is spatiotemporal
in nature where for anomalous dispersion the time variable
can be combined with the two space variables in transverse
directions to define the 3D vector r with r = |r|. There
have been many numerical studies of the 3D NLS equa-
tion in optical pulse propagation [4,16]. In BEC a scaled
nonlinearity n is often defined by n = g/(8π) = Na/l.
The normalization condition in equation (2) is∫

d3r|Ψ(r; t)|2 = 1. (4)

3 Analytic consideration

3.1 Normalizable solution

The localized normalizable solutions to nonlinear equa-
tion (2) with potential (3) are allowed only at negative
energies. We solve numerically equation (2) starting from
a time iteration of the linear problem obtained by setting
g = 0 in this equation. Hence we present a brief summary
of the linear problem in the following [17]. The stationary
solution of the nonlinear equation (2), which we look for,
has the form Ψ(r; t) = ψ(r) exp(−iµt) with µ the chemical
potential, so that[

− ∂2

∂r2
− 2
r

∂

∂r
+ V (r) + g |ψ(r)|2

]
ψ(r) = µψ(r). (5)
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For the piecewise constant square-well potential, the solu-
tion of the linear problem with g = 0 is expressed in terms
of the variable α =

√
(γ2 − |µ|), for r ≤ Λ; and β =

√|µ|,
for r > Λ. In terms of these variables the solution of equa-
tion (5) regular at the origin is expressed as

ψ(r) = A
sin(αr)
αr

, r ≤ Λ, (6)

= − B

βr
exp(−βr), r > Λ. (7)

These solutions are discrete and normalizable satisfying
equation (4) corresponding to a negative µ. The unknown
parameter µ is obtained by matching the reduced wave
function rψ(r) and its derivative at r = Λ:

αΛ cot(αΛ) = −βΛ. (8)

Once µ is known the wave function ψ(r) can also be deter-
mined by implementing the normalization condition (4) of
the wave function on equations (6) and (7).

The boundary condition (8) is simplified for an infinite
square-well potential, where sin(αΛ) = 0, so that α =
jπ/Λ, where the integer j = 1 corresponds to the ground
state, and j > 1 to the excited soliton states. The solution
in this case is given by equation (6) with ψ(r) = 0 for
r > Λ. After obtaining the solution of the linear equation
with g = 0 in this fashion, the nonlinear equation (2) is
solved by time iteration.

3.2 Nonnormalizable solution

The nonnormalizable solutions to equation (5) with the
square-well potential (3) are only allowed for a repulsive
system for positive µ values. The stationary bound-state
solution of the linear problem discussed above is normal-
izable. The solution of the nonlinear equation generated
from that solution by time iteration is also normalizable.
However, for positive g (repulsive system) equation (5)
also has nonnormalizable solutions with no counterpart in
the linear problem. They are obtained from time iteration
of a special nonnormalizable solution of equation (5) for
V (r) = 0. The normalization integral (4) is now infinite
even for a system with finite number of particles N with a
finite scaled nonlinearity n. In other words a system with
a finite n (finite scattering length a and finite number of
atoms N) can possess a wave function with nonzero prob-
ability density everywhere in space.

We note that ψ(r) = c, a constant, is a solution of
equation (5) with V (r) = 0, provided that µ = gc2. It is
realized that for a repulsive system µ is positive and the
present state is a state in the continuum. The required
solution of equation (5) for a nonzero V (r) is obtained
from this solution by time iteration while in each step of
time iteration the strength γ2 of the square-well potential
is increased slowly until the desired value of γ2 is attained
and the final wave function is obtained. The final wave
function tends towards the nonzero constant c for r → ∞.

For a large condensate the kinetic energy term in equa-
tion (2) is negligible and one has the following Thomas-
Fermi (TF) approximation to the wave function

ψTF(r) =
1√
g

√
µ− V (r). (9)

As V (r) is piecewise constant, in the TF approximation
ψTF(r) will also be piecewise constant. Usually, to imple-
ment the TF approximation we need the parameter |µ|.
But in this case we determine µ by requiring that in the
TF approximation ψTF(r) → c asymptotically. The actual
numerical solution also tends to this asymptotic limit.

If the solution of equation (5) is generated from the
initial constant solution ψ(r) = c, the TF approximation
to the wave function becomes

ψTF(r) ≡ C =
√

(µ+ γ2)/g, r ≤ Λ, (10)

ψTF(r) = c =
√
µ/g, r > Λ, (11)

with

C =

√
γ2 + c2g

g
. (12)

3.3 Variational result

To understand how the normalizable bound states are
formed in the square-well potential we employ a varia-
tional method with the following Gaussian wave function
for the solution of equation (2) [16]

ψ(r, t) = A(t) exp
[
− r2

2R2(t)
+
i

2
β(t)r2 + iα(t)

]
, (13)

where A(t) ≡ [π3/4R3/2(t)]−1, R(t), β(t), and α(t) are
the normalization, width, chirp, and phase of ψ, respec-
tively. The Lagrangian density for generating equation (2)
is [16,18]

L(ψ) =
i

2
(ψ̇ψ∗ − ψ̇∗ψ) −

∣∣∣∣∂ψ∂r
∣∣∣∣
2

−V (r)|ψ|2 − 1
2
g|ψ|4, (14)

where the overhead dot denotes time derivative. The trial
wave function (13) is substituted in the Lagrangian den-
sity and the effective Lagrangian Leff calculated by inte-
gration: Leff =

∫ L(ψ)d3r. The Euler-Lagrange equations
for this effective Lagrangian are [19]

d

dt

∂Leff

∂q̇(t)
=
∂Leff

∂q(t)
, (15)

where q(t) stands for the generalized displacements R(t),
β(t), A(t) or α(t).

The following expression for the effective Lagrangian
can be calculated after some straightforward algebra [18]

Leff =
π3/2A2(t)R3(t)

2

[
− 3

2
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2
√

2
gA2(t)

− 2α̇(t) − 3
R2(t)

− 3β2(t)R2(t) −FΛγ(R)
]
, (16)
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where
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with the error function Erf(x) defined by

Erf(x) =
2√
π

∫ x

0

e−t2dt. (18)

The Euler-Lagrange equations (15) for α(t), A(t), β(t),
and R(t) are given, respectively, by

π3/2A2R3 = constant = 1, (19)
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where the time dependence of different observables is sup-
pressed. Eliminating α between (20) and (22) one obtains

2β̇ =
4
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− 4β2 +
gA2

√
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− 16
3
√
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From (21) and (23) we get the following second-order dif-
ferential equation for the evolution of the width R

d2R

dt2
≡ −dU(R)
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where n = g/(8π) and U(R) is the effective potential of
motion given by

U(R) =
2
R2

+
8

3
√

2π
n

R3
+

2
3
FΛγ(R). (25)

Small oscillation around a stable configuration is possi-
ble when there is a minimum in this effective potential
denoting a stationary normalizable state.

In Figures 1a and 1b we plot U(R) vs. R of equa-
tion (25) in dimensionless units for different values of n, Λ
and γ. We exhibit U(R) vs. R for different n for Λ = γ = 2
in Figure 1a. The same for different γ and Λ = 2 and
n = 10 are exhibited in Figure 1b. We find from Fig-
ure 1a that for a fixed γ and Λ, U(R) has a minimum for
nlim > n > ncrit corresponding to a stable bound state,
where nlim is positive (repulsive system) and ncrit is nega-
tive (attractive system). In Figure 1a there is a minimum
for n = 10, 0 and −0.4 and no minimum for n = 40 and
−1. The reason for the nonexistence of bound state for
n > nlim and for n < ncrit are distinct. The limiting con-
dition n > nlim corresponds to a highly repulsive system
which cannot be bound in the square-well potential with

Fig. 1. (Color online) The effective potential U(R) of equa-
tion (25) vs. R in dimensionless units for Λ = 2, (a) γ = 2 and
n = 40, 10, 0,−0.4, and −1 (upper to lower curves) and for (b)
n = 10 and γ = 1, 2, and 3 (upper to lower curves).

the given Λ and γ. The condition n < ncrit corresponds to
a highly attractive system which collapses with the given
Λ and γ. In Figure 1a for n = 40 the system is unbound
and for n = −1 it is unstable to collapse. In Figure 1a we
see that as the attractive nonlinearity |n| is increased, one
of the walls of the well for small r is gradually lowered and
for a sufficiently large attraction this wall is completely ab-
sent and the condensate collapses into the infinitely deep
well at the center for n = −1 in Figure 1a.

In Figure 1b we illustrate the effect of increasing the
strength of the square-well potential for a fixed nonlin-
earity n = 10. This is done by varying the depth of the
square-well potential γ2 for a fixed range Λ. For γ = 2 and
3, U(R) has a minimum and the attraction of the square-
well potential is sufficient to bind the repulsive system
with n = 10. However, for γ = 1 there is no minimum in
U(R) and the square-well potential is too weak to bind
this system.

4 Numerical result

We solve NLS equation (2) numerically for the square-
well potential using the split-step time-iteration method
employing the Crank-Nicholson discretization scheme de-
scribed recently [20,21]. We calculated the solutions
with real-time propagation. However, we checked that



S.K. Adhikari: Finite-well potential in the 3D nonlinear Schrödinger equation 283

imaginary-time propagation also leads to consistent re-
sult. To obtain the normalizable solution, the real time
iteration is started with the known solution of the linear
problem with scaled nonlinearity n = 0. Then during time
iteration the nonlinearity n is switched on slowly until its
desired value is attained. The change in the parameter
should be such that it does not greatly alter the eigen-
value of the Hamiltonian (after time propagation). We
also calculated the nonnormalizable bound states in the
continuum for a positive n. To obtain this solution, the
time iteration is started with a constant wave function
for a finite positive n with γ = 0. Then in the course of
time iteration the strength γ of the square-well potential
is switched on slowly until its desired value is attained.
If stabilization upon time iteration could be achieved for
the chosen parameters one already obtains the required
nonlinear bound state in the square-well potential. In pre-
vious studies we compared critically the present numer-
ical scheme for the time-dependent NLS equation with
other approaches [20,21] including the time-independent
schemes [22] and assured that the present approach leads
to results with high precision not only for the NLS equa-
tion with one space variable but also for NLS equations
in two and three space variables [23]. The agreement be-
tween the results obtained with real and imaginary time
propagation also assures the correctness of our results.

Although we calculate our results in dimensionless
units, typical parameters for an experimental realization
can be easily obtained therefrom for a particular atom.
In the following we present results for the Rb atom. For
Rb let the length l be 1 µm; for this to be possible the
reference frequency is ω ≈ 2π × 38 Hz. Consequently, the
unit of energy is E0 ≡ �ω ≈ 1.57 × 10−13 eV.

4.1 Normalizable states

Stable normalizable bound states are indeed found in all
cases for various ranges of parameters. Some plausible
properties of these bound state are found in agreement
with the above variational study. For a given nonlinear-
ity, these bound states are only formed for a sufficiently
strong square-well potential determined by Λ and γ. For
weaker potentials, from the wisdom obtained in varia-
tional calculation, the effective potential U(R) does not
have a minimum and there cannot be any bound state.
For a given square-well potential, bound states are found
for nlim > n > ncrit.

It is difficult to obtain the limiting nonlinearity n =
nlim numerically as this corresponds to a state with zero
energy which extends to a very large r. However, the crit-
ical value n = ncrit can be obtained numerically in a
controlled fashion as the wave function is highly local-
ized in this limit. In Figures 2 we plot the critical non-
linearity for collapse ncrit for different parameters of the
square-well potential. In Figure 2a we plot ncrit vs. γ−2

for Λ = 2 µm whereas in Figure 2b we plot ncrit vs. Λ for
γ2 = 4E0. In these figures we show results of variational
and full numerical calculations. The variational calcula-
tion always leads to a larger |ncrit|. In case of the infinite
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Fig. 2. Critical nonlinearity ncrit (a) vs. γ−2 for Λ = 2 µm
and (b) vs. Λ for γ2 = 4E0 ≡ 4�ω: full line – numerical; dotted
line – variational.
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harmonic potential also, the variational estimate of |ncrit|
is larger than the result of full numerical calculation [5].
For the infinite square-well potential with γ2 = ∞ and
Λ = 2 µm, ncrit = −0.62; for the infinite parabolic poten-
tial ncrit = −0.575 [5,24]. Because of the different shapes
of these two infinite potentials ncrit is different in these
two cases.

Although it is difficult to obtain nlim from a numerical
solution of the NLS equation, it is possible to obtain it
from the variational calculation. The limiting nonlinear-
ity nlim corresponds to the largest value of n for which
U(R) has a minimum. In Figure 3 we plot nlim vs. γ2

for Λ = 2 µm. We see that nlim increases linearly with
the strength of the square well γ2. The variational calcu-
lation underbinds the system. The repulsive nonlinearity
destroys binding and a smaller repulsive nonlinearity can
destroy the weaker binding of the variational model. Con-
sequently, the variational limiting nonlinearity is smaller
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than the actual limiting nonlinearity, which we verified in
our numerical calculation. The numerical calculation re-
lies on the existence of a localized wave function and it
is difficult to calculate the limit when this wave function
extends to infinity and a localized wave function ceases to
exist. The TF wave function (9) is always fully localized
within r < Λ and is inadequate for calculating the limit-
ing nonlinearity for µ→ 0. The TF wave function leads to
a much smaller value nlim = Λ3γ2/6, based on imposing
µ = 0 within the TF regime.

In Figure 4a we plot the wave function for the bound
state of the NLS equation for a square-well potential with
γ2 = 4E0, Λ = 2 µm and for nonlinearities n = −0.75, 0
and 10. The system with n = −0.75 is attractive, n = 0
noninteracting, and n = 10 repulsive. In these cases results
for both the full numerical calculation and variational ap-
proximation are shown. In addition, for n = 10 the TF
approximation (10) with c = µ = 0 is also shown. In Fig-
ure 4b we show the wave functions for the first excited
soliton with a single node for γ2 = 4E0 and Λ = 4 µm
and for n = −0.65 and 6. In Figure 4c we show the wave
functions for the second excited soliton with two nodes
for γ2 = 4E0 and Λ = 4 µm and for n = −0.4 and 6. In
Figure 4 we find that the bound state for the attractive
system with negative n values is more centrally peaked
than the bound state for the repulsive system with pos-
itive n values. This is true for both ground and excited
solitonic states in the finite square-well potential as well
as for states in the infinite square-well potential studied
below. The central peaking of the wave function for the
attractive system corresponding to a large central proba-
bility density is a consequence of the nonlinear attraction.

Next we consider the infinite square-well potential of
range Λ. In this case the system remains confined in the
region 0 ≤ r ≤ Λ. The wave function is zero outside this
region: r > Λ. We illustrate the wave functions in this case
for different values of nonlinearity n for the ground state
and the first excited soliton for Λ = 2 µm. For the ground
state there is no node of the wave function for 0 < r < Λ.
For the jth excited soliton these are j nodes of the wave
function in this region. The wave functions for the ground
state and the first excited soliton for different n are shown
in Figures 5a and 5b, respectively.

4.2 Nonnormalizable states

Now we discuss the nonnormalizable solutions of equa-
tion (2) obtained for repulsive condensates. No such states
are found for attractive condensates with negative n. To
obtain these solutions by time iteration of equation (2)
we start with the initial constant solution ψ(r) = 0.1
over all space for V (r) = 0 and a fixed nonlinearity n.
In the course of time iteration the square-well potential
is slowly introduced without altering the nonlinearity un-
til the full square-well potential is obtained. The resulting
wave function of this calculation is plotted in Figures 6a
and 6b together with the TF approximation. In Figure 6a
we show the wave function for γ2 = 4E0, Λ = 2 µm and
n = 0.1, 0.3, and 10. In Figure 6b we show the same for

Fig. 4. (a) Ground-state wave function ψ(r) of the NLS equa-
tion (5) with the square-well potential for γ2 = 4E0, Λ = 2 µm
and scaled nonlinearity n − 0.75, 0 and 10 (upper to lower
curves). In all cases the numerical and variational results are
shown, in addition, for n = 10 the TF approximation is also
shown. (b) Same for the first excited soliton (numerical calcu-
lation only) with γ2 = 4E0, Λ = 4 µm and n = −0.65 and 6.
(c) Same for the second excited soliton (numerical calculation
only) with γ2 = 4E0, Λ = 4 µm and n = −0.4 and 6.

Λ = 2 µm, n = 0.3 and γ2 = E0, 4E0 and 16E0. From Fig-
ure 6a we find that for a fixed γ2 and Λ the TF approxima-
tion becomes a better approximation as the nonlinearity
increases; whereas from Figure 6b we find that for a fixed
Λ and n the TF approximation becomes a better one as
the strength of the potential γ2 increases.

The normalizable states discussed in the last subsec-
tion are true bound states for negative µ. The nonnormal-
izable states occur at positive µ and can be referred to as
states in the continuum. Similar nonnormalizable states
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Fig. 5. (a) Ground-state wave function ψ(r) of the NLS equa-
tion (5) for the infinite square-well potential of range Λ = 2 µm
and scaled nonlinearity n = −0.62, 0 and 10 (upper to lower
curves); (b) same for the first excited soliton for n = −0.3, 0
and 10.

have been obtained in the study of the 1D NLS equa-
tion with the square-well potential [7]. However, there is
the possibility of physically observing the nonnormalizable
states with infinite norm as a transition from the normal-
izable states with very large nonlinearity [7]. An increase
of the scattering length a via a Feshbach resonance [25]
in a BEC may increase the nonlinearity n (≡ Na/l) in-
definitely and thus transform a normalizable state to a
nonnormalizable one. This conclusion results from the fol-
lowing observation. As the normalization integral (4) and
the nonlinearity g = 8πn of equation (2) are mixed in
the present nonlinear model, an increase in g can either
be implemented my increasing the nonlinear term g di-
rectly in equation (2) or by augmenting the normalization
integral (4) in the same proportion. Hence the nonnor-
malizable states with very large (infinite) normalization
could be a transition from normalizable states with large
nonlinearity.

5 Discussion and conclusion

The study of the 1D NLS equation with the simple square-
well potential is of interest because of its simplicity and
intrinsic nonlinear nature. Its interest in BEC and optics

Fig. 6. Wave functions of the nonnormalizable states ψ(r) of
the NLS equation (5) for (a) γ2 = 4E0, Λ = 2 µm and different
n values, and for (b) n = 0.3, Λ = 2 µm and different γ. In both
cases the wave function tends to 0.1 as r → ∞. In all cases the
results of the full numerical calculation and TF approximation
are shown.

has motivated recent investigation of this problem [7]. In
the 3D world, 1D systems can only be achieved in some ap-
proximation and there are nontrivial differences between
the solutions of the NLS in 1D and 3D [1].

Hence we performed in this paper an investigation
of the 3D NLS equation with the square-well potential
using numerical and variational solutions. We find that
the system allows normalizable bound-state solutions for
nlim > n > ncrit, where the limiting nonlinearity nlim

corresponds to a repulsive (positive) limit beyond which
the system cannot be bound and the critical nonlinearity
ncrit to an attractive (negative) nonlinearity below which
the system collapses. We calculated ncrit for different pa-
rameters of the square-well potential. Many results of this
paper can be verified experimentally in BEC, where one
can make a square-well trap by joint magnetic and opti-
cal control [7,9]. In addition to the discrete normalizable
states we find that the 3D NLS equation with the square-
well potential also sustains nonnormalizable states in the
continuum of interest in nonlinear physics and mathemat-
ics. These states cannot be obtained via a transition from
the normalizable states.

The work was supported in part by the CNPq and FAPESP
of Brazil.
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